Distributed Submodular Maximization: Identifying Representative Elements in Massive Data
نویسندگان
چکیده
Many large-scale machine learning problems (such as clustering, non-parametric learning, kernel machines, etc.) require selecting, out of a massive data set, a manageable yet representative subset. Such problems can often be reduced to maximizing a submodular set function subject to cardinality constraints. Classical approaches require centralized access to the full data set; but for truly large-scale problems, rendering the data centrally is often impractical. In this paper, we consider the problem of submodular function maximization in a distributed fashion. We develop a simple, two-stage protocol GREEDI, that is easily implemented using MapReduce style computations. We theoretically analyze our approach, and show, that under certain natural conditions, performance close to the (impractical) centralized approach can be achieved. In our extensive experiments, we demonstrate the effectiveness of our approach on several applications, including sparse Gaussian process inference and exemplar-based clustering, on tens of millions of data points using Hadoop.
منابع مشابه
Submodular Maximization over Sliding Windows
In this paper we study the extraction of representative elements in the data stream model in the form of submodular maximization. Different from the previous work on streaming submodular maximization, we are interested only in the recent data, and study the maximization problem over sliding windows. We provide a general reduction from the sliding window model to the standard streaming model, an...
متن کاملThe Power of Randomization: Distributed Submodular Maximization on Massive Datasets
A wide variety of problems in machine learning, including exemplar clustering, document summarization, and sensor placement, can be cast as constrained submodular maximization problems. Unfortunately, the resulting submodular optimization problems are often too large to be solved on a single machine. We develop a simple distributed algorithm that is embarrassingly parallel and it achieves prova...
متن کاملDistributed Submodular Maximization
Many large-scale machine learning problems – clustering, non-parametric learning, kernel machines, etc. – require selecting a small yet representative subset from a large dataset. Such problems can often be reduced to maximizing a submodular set function subject to various constraints. Classical approaches to submodular optimization require centralized access to the full dataset, which is impra...
متن کاملHorizontally Scalable Submodular Maximization
A variety of large-scale machine learning problems can be cast as instances of constrained submodular maximization. Existing approaches for distributed submodular maximization have a critical drawback: The capacity – number of instances that can fit in memory – must grow with the data set size. In practice, while one can provision many machines, the capacity of each machine is limited by physic...
متن کاملNon-Monotone Adaptive Submodular Maximization
A wide range of AI problems, such as sensor placement, active learning, and network influence maximization, require sequentially selecting elements from a large set with the goal of optimizing the utility of the selected subset. Moreover, each element that is picked may provide stochastic feedback, which can be used to make smarter decisions about future selections. Finding efficient policies f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013